Find the ratio in which point P(k, 7) divides the segment joining A(8, 9) and B(1, 2). Also find k.
Open in App
Solution
Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then
(x,y)=(mx2+nx1m+n,my2+ny1m+n)
Let the ratio be x: 1. Using the section formula, k=1x+1×8x+1 ⇒kx+k=x+8................(1) Also,7=2x+9x+1 ⇒7x+7=2x+9 ⇒5x=2 ⇒x=25 So, the required ratio is 2 : 5. Putting this value of x in (1) we get k(25+1)=25+8 ⇒75k=425 ⇒k=6