Find the ratio in which the midpoint of A(14, 10) and B(2, 4) divides the line joining the points of trisection of the line AB.
Let the points of trisection of the line segment AB be P(x,y) and Q(h,k)
∴AP=PQ=QB
⇒AP:PB=1:2
We know, by section formula, that the coordinates of the point that divides a line in the ratio m : n is,
((n×x1+m×x2)m+n,n×y1+m×y2m+n)
where (x1,y1) and (x2,y2) are the coordinates of the endpoints of the line segment.
⇒x=1(2)+2(14)1+2=2+283=303=10
⇒y=1(4)+2(10)1+2=4+203=243=8
∴P=(10,8)
Now, AQ:QB=2:1
⇒h=2(2)+1(14)1+2=4+143=183=6
⇒k=2(4)+1(10)1+2=8+103=183=6
∴Q=(6,6)
Let the midpoint of AB be C(a,b)
⇒a=2+142=162=8
⇒b=4+102=142=7
∴C=(8,7)
Let, 'C' divides PQ in the ratio k:1
⇒8=6k+10k+1
⇒8(k+1)=(6k+10)
⇒8k−6k=10−8
⇒2k=2
⇒k=1
∴ The required ratio is 1 : 1 i.e., the mid point of AB is also the midpoint of PQ.