Find the rational numbers having the following decimal expansions :
(i) 0.¯3
(ii) 0.¯¯¯¯¯¯¯¯231
(iii) 3.¯¯¯¯¯¯52
(iv) 0.6¯¯¯8
(i) 0.¯¯¯3=0.3333
=0.3+0.03+0.003+...∞
=310+3102+3103+....∞
=310(1+110+1102+.....)
=310(11−110) [∵Sum of G.P.=a1−r]
=310×109
=39
Hence, 0.¯¯¯3=13
(ii) 0.¯¯¯¯¯¯¯¯231=0.231231231....
=0.231+0.000231+0.000000231+....∞
=231103=231106+231109+....∞
=231103(1+1103+1106+.....)
=2311000(11−11000)
Hence,0.¯¯¯¯¯¯¯¯231=231999
(iii) 3.¯¯¯¯¯¯52=3+0.52222.....
=3+0.5+0.02+0.002+0.0002+....∞
=3.5+2102+2103+2104+....∞
=3.5+2102(1+110+1102+.....)
=3510+2100(11−110)
=3510+2100×109
=3510+290
=315+290
Hence, 3.¯¯¯¯¯¯52=31790
(iv) The rational number can be written as :
0.6¯¯¯8=0.6+0.08+0.008+0.0008+....∞
=35+8[0.01+0.001+0.0001+....∞]
=35+8[1100+11000+....∞]
This is an infinite GP with first term 1100 and common ratio 110
=35+8.1100.11−110
=35+445=3145
Hence, 0.¯¯¯¯¯¯52=3145.