√5+√3√5−√3×√5+√3√5+√3⇒5+3+2√152⇒4+√15∴a=4,b=1
√2+√33√2−2√3×3√2+2√33√2+2√3⇒(√2+√3)(3√2+2√3)18−12⇒6+2√6+3√6+66⇒2+56√6∴a=2,b=56
√4+3√5√4−3√5×√4+3√5√4+3√5⇒16+45+24√516−45⇒61+24√5−29∴a=−6129,b=−2429
In each of the following determine rational numbers a and b :
(i) √3−1√3+1=a−b√3
(ii) 4+√22+√2=a−√b
(iii) 3+√23−√2=a+b√2
(iv) 5+3√37+4√3=a+b√3
(v) √11−√7√11+√7=a−b√77
(vi) 4+3√54−3√5=a+b√5