The given binomial surd is 513+5−13.
Let
a=513 and b=5−13, therefore,
a=513⇒a3=(513)3⇒a3=533⇒a3=5
Also,
b=5−13⇒b3=(5−13)3⇒b3=5−33⇒b3=5−1⇒b3=15
Thus, a3+b3=5+15=25+15=265
But we also know that the formula for a3+b3=(a+b)(a2−ab+b2), therefore,
a3+b3=(a+b)(a2−ab+b2)⇒265=(513+5−13)[(513)2−(513×5−13)+(5−13)2]⇒265=(513+5−13)[(523)−(513−13)+(5−23)]⇒265=(513+5−13)[523+5−23−(50)]⇒265=(513+5−13)(523+5−23−1)
Since 265 is a rational number.
Hence, (523+5−23−1) is the rationalising factor of (513+5−13).