The given binomial surd √1+y−√1−y can be rewritten as (1+y)12−(1−y)12.
Let a=(1+y)12 and b=(1−y)12, therefore,
a2=((1+y)12)2⇒a2=(1+y)12×2⇒a2=1+y
Also,
b2=((1−y)12)2⇒b2=(1−y)12×2⇒b2=1−y
Thus, a2−b2=(1+y)−(1−y)=1−1+y+y=2y
But we also know that the formula for a2−b2=(a+b)(a−b), therefore,
a2−b2=(a+b)(a−b)⇒2y=(√1+y+√1−y)(√1+y−√1−y)
Since 2y is a rational number.
Hence, (√1+y+√1−y) is the rationalising factor of (√1+y−√1−y).