Find the real numbers x and y if (x−iy)(3+5i) is the conjugate of -6 -24i
Here −6−24i=−6+24i
Now (x−iy)(3+5i)=−6+24i
⇒ 3x+5xi−3yi−5yi2=−6+24i
⇒ (3x+5y)+(5x−3y)i=−6+24i
Comparing both sides, we have
3x+5y=−6 …(i)
and 5x−3y=24 …(ii)
Multiplying (i) by 3 and (ii) by 5 and then adding
9x+15/y=−1825x−15/y=120––––––––––––––––––– 34x=102⇒x=3
Putting x=3 in (i)
3×3+5y=−6 ⇒5y=−6−9
⇒ y=−155=−3