Find the real part of the complex number (1−i)(1+i)
z = (1−i)(1+i)
Taking log on both sides
log z = (1+i) log(1-i)
= (1+i) log √2[cos(π4)+isin(−π4)]
= (1+i) loge(e−iπ4).√2
= (1+i) (−iπ4)+(1+i)loge√2
= −iπ4+π4+loge√2+iloge√2
= (π4+loge√2)+i(loge√2−π4)
Re(z) = loge√2+π4