Ans.−π/2,0,π/2
cos7x=1−sin4x=(1−sin2x)(1+sin2x)
=cos2x(1+sin2x)
∴cosx=0 or x=π/2,−π/2
or cos5x=1+sin2x or cos5x−sin2x=1
Now maximum value of each cosx or sinx is 1. Hence the above equation will hold when cosx=1 and sinx=0. Both these imply x=0.
Hence x=π2,π2,0