Find the real roots of the equation x2+2ax+116=−a+√(a2+x−116) where 0<a<14.
A
x1=(1−2a)2+√(1−2a2)2−116
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x2=(1−2a2)−√(1−2a2)2−116
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x2=(1+2a2)−√(1+2a2)2−116
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x1=(1+2a)2+√(1+2a2)2−116
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Ax1=(1−2a)2+√(1−2a2)2−116 Bx2=(1−2a2)−√(1−2a2)2−116 We have, x2+2ax+116=−a+√(a2+x−116) Let y=x2+2ax+116 ......(1) and y1=−a+√(a2+x−116) ......(2) ∴y=y1 .....(3) From (2), y1+a=√(a2+x−116) ⇒x=y21+2ay1+116x=y2+2ay+116 ......(4) {From (3)} Equation (1) and (4) represents parabolas, both parabolas symmetrical about the line y=x .....(5) From (1)& (5) we get, ⇒x=x2+2ax+116⇒x2−(1−2a)x+116=0 ∴x=(1−2a)±√(1−2a)2−142 For real roots (1−2a)2−14≥0 ∴1−2a>12⇒a<14 Hence, x1=(1−2a)2+√(1−2a2)2116andx2=(1−2a2)−√(1−2a2)2116 are real roots and given fact satisfy the original equation.