Given :
tan−1√x(x+1)+sin−1√x2+x+1=π2
Consider tan−1√x(x+1)
Domain of tan−1x is R
⇒x(x+1)≥0
[As √x is defined for x≥0 ]
⇒x2+x≥0
⇒x2+x+1≥1…(1)
Consider sin−1√x2+x+1
∵ Domain of sin−1x is [−1,1]
⇒−1≤√x2+x+1≤1
⇒0≤√x2+x+1≤1 [∵√x≥0]
⇒0≤√x2+x+1≤1…(2)
From equation (1) and (2),
⇒x2+x+1=1
⇒x2+x=0
⇒x(x+1)=0
⇒x=0,−1
⇒x=0,−1
⇒tan−1√x(x+1)+sin−1√x2+x+1
=tan−1√0+sin−1√1
⇒tan−1√x(x+1)+sin−1√x2+x+1=0+π2
⇒tan−1√x(x+1)+sin−1√x2+x+1=π2
∴x=0 and x=−1