Find the real values of θ for which the complex number 1+i cos θ1−2i cos θ is purely real.
Let z=1+i cos θ1−2i cos θ=1+icos θ1−2i cosθ×1+2i cos θ1+2i cos θ=1+2i cos θ+i cos θ(1+2i cos θ)12+(2 cos θ)2=1+2i cos θ+i cos θ−2cos2θ1+4 cos2θ=1−2cos2θ+3i cos θ1+4cos2θ=1−2cos2θ1+4 cos2θ+3 cos θ1+4cos2θ
We know that z is purely real if and only if Imz = 0
∴ 3 cos θ1+4 cos2θ=0
( ∵ z is given to be purely real)
⇒ 3 cos θ=0⇒ cos θ=0⇒ cos θ=cos π2
∴ The general solution is given by
θ =2nπ±π2, nϵZ