Find the real values x satisfying log10 x+ log10 (2-x) < 1 .
x ∈ (0, 2)
Given inequality log10 x+ log10 (2 - x) < 1 ----------------(1)
For log to be defined x > 0
2 - x > 0
x - 2 < 0
x < 2
⇒ x ∈ (0,2) ------------------------(2)
Since log10 x+ log10 (2 - x) < 1
log10x (2 - x) < 1
Base of the log is greater than 1, then inequality is equivalent to
x(2 - x) < 101
2x - x2 - 10 < 0
x2 - 2x + 10 > 0
(x−1)2 + 9 > 0 ---------------------------(3)
This is true for all values of x
From equation 2 & 3
x ∈ (0,2)