The correct option is B 13(a2+b2)+24ab
Given the expression
(3a+2b)2+(2a+3b)2
Let (3a+2b)=x and (2a+3b)=y
∴ the expression becomes x2+y2
⇒x2+y2=(x+y)2−2xy
[∵(a+b)2=a2+b2+2ab]
Now, re-substituting value of x and y in the above expression we get,
⇒x2+y2=[(3a+2b)+(2a+3b)]2−2(3a+2b)(2a+3b)
⇒x2+y2=[3a+2b+2a+3b]2−2[6a2+13ab+6b2]
⇒x2+y2=[5(a+b)]2−2[6(a2+b2)+13ab]
⇒x2+y2=25(a2+b2+2ab)−12(a2+b2)−26ab
⇒x2+y2=25(a2+b2)+50ab−12(a2+b2)−26ab
⇒x2+y2=13(a2+b2)+24ab
So, this is the required relation between a and b.
Now,Putting value of a2+b2=5 and ab=2 we get
(3a+2b)2+(2a+3b)2=13(a2+b2)+24ab=13×5+24×2
⇒13(a2+b2)+24ab=65+48=113.