Find the relation obtained by eliminating θ from the equations x=rcosθ+ssinθ and y=rsinθ−scosθ
Open in App
Solution
Given, x=rcosθ+ssinθ ⇒x2=(rcosθ+ssinθ)2=r2cos2θ+2rscosθ.sinθ+s2sin2θ Also
y=rsinθ−scosθ⇒y2=r2sin2θ+s2cos2θ−2rssinθcosθ ⇒x2+y2=r2(cos2θ+sin2θ)+s2(sin2θ+cos2θ) =r2(1)+s2(1)[∵sin2θ+cos2θ=1]=r2+s2 Hence, the required relation is x2+y2=r2+s2