The given function is f(x)={ax+1,ifx≤3bx+3,Ifx>3
If f is continuous at x=3, then
limx→3−f(x)=limx→3+f(x)=f(3) ....(1)
Now,
limx→3−f(x)=limx→3−(ax+1)=3a+1
limx→3+f(x)=limx→3+(bx+3)=3b+3
and f(3)=3a+1
Therefore from (1), we obtain
3a+1=3b+3=3a+1
⇒3a+1=3b+3
⇒3a=3b+2⇒a−b=23
Therefore the required relationship is given by, a−b=23