Here, g(x)=3x−1. To apply Remainder theorem, (3x−1) should be converted to (x−a) form.
∴3x−1=13(3x−1)=x−13∴g(x)=(x−13)
By remainder theorem, r(x)=p(a)=p(13)
p(x)=x3−6x2+2x−4⇒p(13)=(13)3−6(13)2+2(13)−4
=127−69+23−4=1−18+18−10827=−10727
∴ the remainder p(13)=−10727