Using remainder theorem, if p(x) is divided by (x−a), then the remainder can be found by p(a)
Given: p(x)=x3+3x2+3x+1.
(i) If x+1=0, then x=−1
So putting the value of x=−1 in the given equation, we get,
p(−1)=(−1)3+3(−1)2+3(−1)+1=−1+3−3+1=0
Hence, remainder is 0.
(ii) If x−12=0, then x=12
So, putting x=12 in equation, we get
p(12)=(12)3+3(12)2+3(12)+1=18+34+32+1=278=338
Hence, the remainder is 338.
(iii) If x+0=0 then x=0
So putting the value of x=0 in the given equation, we get,
p(0)=(0)3+3(0)2+3(0)+1=0+0+0+1=1
Hence, the remainder is 1.
(iv) If x+π=0, then x=−π
So putting the value of x=−π in the equation ,we get,
p(−π)=(−π)3+3(−π)2+3(−π)+1=−π3+3π2−3π+1
Hence, the remainder is −π3+3π2−3π+1
(v) If 5+2x=0, then x=−25
So putting the value of x=−25 in the given equation, we get,
p(−25)=(−25)3+3(−25)2+3(−25)+1
=−8125+1225−65+1=−8+60−150+125125=27125
Hence, the remainder is 27125