Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
x2−(2b−1)x+(b2−b−20)=0
x2−(2b−1)x+(b2−b−20)=0
Solving the Q.E in x, we have
x=−b±√b2−4ac2
Discriminant, D=b2−4ac
D=(2b−1)2−4∗1∗(b2−b−20)
=(4b2+1−4b−4b2+4b+80)=81>0,so solution exists
x=−b±√D2
x=(2b−1)±√812
x=2b−1±92
x=2b−1+92 or 2b−1−92
x=2b+82 or 2b−102
x=b+4 or b−5