Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
a2b2x2−(4b4−3a4)x−12a2b2=0,a≠0 and b≠0
a2b2x2−(4b4−3a4)x−12a2b2=0
Here A=a2b2
B=−(4b4−3a4)
C=−12a2b2
D=discriminant=B2−4AC
=[(−(4b4−3a4)2−4×[a2b2]×[−12a2b2]
=[16b8+9a8−24a4b4]+48a4b4
=16b8+9a8−24a4b4
=(4b4)2+2×4b×3a2+(3a2)2
=(4b4+3a4)2[∵(a+b)2=a2+b2+2ab]
Now, let us use the quadratic formula
x=−B±√B2−4AC2A
x=−B±√D2A
x=−(−(4b4−3a4))±√(4b4+3a4)22a2b2
x=(4b4−3a4) ± 4b4+3a42a2b2
now taking positive sign,
x=4b4−3a4 + 4b4+3a42a2b2
x=8b42a2b2
x=4b2a2
taking negative value :
x=4b4−3a4 − 4b4+3a42a2b2
x=−6a42a2b2
x=−3a2b2
∴X=4b2a2,−3a2b2