The correct option is D 8,−5
Given, x+5=2x+10x−6
⇒(x+5)(x−6)=(2x+10)⇒x2−x−30=2x+10⇒x2−3x−40=0
For the standard form of quadratic equation ax2 + bx + c = 0,
roots are −b±√b2−4ac2a.
Here, a=1,b=−3 and c=−40
∴ Roots of the quadratic equation are:
x=−(−3)±√(−3)2−(4×1×40)2×1 =3 ±√9 + 1602 =3 ±√1692 =3 ±132⇒x=3 +132 , x=3 −132⇒x=162 , x=−102⇒x=8 , x=−5
Hence, the roots of the equation x+5=2x+10x−6 are 8,−5.