x2+5x−(a2+a−6)=0 Solving the Q.E in x,we have
x=−b±√b2−4ac2
Discriminant, D=b2−4ac
D=52−4(−(a2+a−6))
=25+4a2+4a−24=4a2+4a+1=(2a+1)2>0,so solution exists
x=−b±√D2
x=−5±√(2a+1)22
x=−5±2a+12
x=−4±2a2
x=−2±a
x=−2+a or x=−2−a
Find the roots of each of the following equations, if they exist, by applying the quadratic formula: x2+5x−(a2+a−6)=0