Step 1:
1x+4−1x−7=1130
⇒[(x−7)−(x+4)](x+4)(x−7)=1130
⇒−11(x+4)(x−7)=1130
⇒(x+4)(x−7)=−30
⇒x2−3x−28=−30
⇒x2−3x+2=0
Step 2:
We know that, The standard equation is
ax2+bx+c=0
And the obtained equation is
x2−3x+2=0
On comparing we get, a=1,b=−3,c=2
Step 3:
Now, a×c=2=(−1)(−2)
and b=−3(−1−2)
Step 4:
⇒x2−x−2x+2=0
Step 5:
⇒x2−x−2x+2=0
⇒x(x−1)−2(x−1)=0
⇒(x−1)(x−2)=0 (Grouping the term)
Step 6:
⇒(x−1)(x−2)=0
Thus, either x−1=0 or x−2=0
⇒x=1 or x=2
∴x=1 or x=2