wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the roots of the following quadratic equation (if they exist) by the method of completing the square.
x2(2+1)x+2=0

A
exist,2, 1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
exist,2, 1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
exist,2, 1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
does not exist
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D exist,2, 1
x2(2+1)x+2=0
Here, a=1,b=(2+1),c=2
x2(2+1)x=2

Now, (2+12)2=2+22+14

Adding 2+22+14, on both sides,

x2(2+1)x+2+22+14=2+2+22+14

[x(2+12)]2=222+14

[x(2+12)]2=(212)2

x(2+12)=±(212)

x=21+2+12 and x=2+1+2+12

x=2 and x=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Completing the Square
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon