Find the roots of the following quadratic equations by using the quadratic formula
xx−1+x−1x=4,x≠0,1
Given, xx−1+x−1x=4
⇒x2+(x−1)2x(x−1)=4
⇒x2+x2−2x+1=4x2−4x
⇒2x2−4x2−2x+4x+1=0
⇒−2x2+2x+1=0
⇒2x2−2x−1=0
Comparing
2x2−2x−1=0 with ax2+bx+c=0, we get a=2,b=−2.c=−1
Now
the roots are = −b±√b2−4ac2a
= −(−2)±√(−2)2−4×2×(−1)2×1
= 2±√4+82
= 2±√122
= 2±2√32
= 1±√3