3a2x2+8abx+4b2=0
a=3a2b=8abc=4b2
x=−b±√b2−4ac2a=−8ab±√(8ab)2−4×3a2×4b22×3a2=−8ab±√64a2b2−48a2b26a2=−8ab±√16a2b26a2=−8ab±4ab6a2=−8ab+4ab6a2 or −8ab−4ab6a2=−4ab6a2 or −12ab6a2x=−2b3a or −2ba
Find the roots of each of the following equations, if they exist, by applying the quadratic formula: 3a2x2+8abx+4b2=0,a≠0