The correct option is D −√32, −√32
4x2+4√3x+3=0
On comparing this equation with ax2+bx+c=0, we get
a=4,b=4√3 and c=3
By using quadratic formula, we get
x=−b±√b2−4ac2a
⇒x=−4√3 ±√(4√3)2−4×4×32×4
⇒ x=−4√3 ±√48−488
⇒ x=−4√3±√08
⇒ x=−4√38
∴x=−√32
We see that the discriminant is 0.
So, the roots of the equation are equal.
Hence the roots of 4x2+4√3x+3=0 are −√32,−√32.