Consider the given equation.
x2−2ax+a2−b2−c2=0 …….. (1)
Let α,β are the roots of given equation.
α+β=−BA=2a ……. (2)
αβ=CA=a2−b2−c2 …….. (3)
Since, (α−β)=√(α+β)2−4αβ
(α−β)=√(2a)2−4(a2−b2−c2)
(α−β)=√4a2−4a2+4b2+4c2
(α−β)=√4b2+4c2
(α−β)=2√b2+c2 ……. (4)
On adding equation (2) and (4), we get
2α=2a+2√b2+c2
α=a+√b2+c2
On putting the value of α in equation (2), we get
β=a−√b2+c2
Hence, this is the answer.