wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the second order derivative of the given functions.

e6xcos 3x

Open in App
Solution

Let y = e6xcos 3x

Differentiating twicely w.r.t. x, we get

dydx=ddx(e6xcos 3x)=e6xddx(cos 3x)+cos 3xddx(e)6x =e6x(sin 3x.3)+(cos 3x)e6x.6=e6x{3sin 3x+6 cos 3x}and d2ydx2=ddx{e6x(3 sin 3x+6 cos 3x)}=e6xddx(3 sin 3x+6 cos 3x)+(3 sin 3x+6 cos 3x)ddxe6x=e6x(3 cos 3x.36 sin 3x.3)+(3 sin 3x+6 cos 3x)e6x.6=e6x{9 cos 3x18 sin 3x18 sin 3x+36 cos 3x}=e6x{27 cos 3x36 sin 3x}=9e6x{3 cos 3x4 sin 3x}


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon