wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the second order derivatives of each of the following functions:

(i) x3 + tan x
(ii) sin (log x)
(iii) log (sin x)
(iv) ex sin 5x
(v) e6x cos 3x
(vi) x3 log x
(vii) tan−1 x
(viii) x cos x
(ix) log (log x)

Open in App
Solution

(i) We have,

y=x3+tanxDifferentiating w.r.t. x, we getdydx=3x2+sec2xDifferentiating again w.r.t. x, we getd2ydx2=6x+2sec2x tanx

(ii) We have,

y= sinlogxDifferentiating w.r.t. x, we getdydx=coslogx×1xDifferentiating again w.r.t. x, we getd2ydx2=-sinlogx1x×1x+coslogx×-1x2 =-sinlogx+coslogxx2

(iii) We have,

y= logsinxDifferentiating w.r.t. x, we getdydx=1sinx×cosx =cotxDifferentiating again w.r.t. x, we getd2ydx2=-cosec2x

(iv) We have,

y =exsin5xDifferentiating w.r.t. x, we getdydx=ex sin 5x +ex cos 5x×5Differentiating again w.r.t. x, we getd2ydx2=ex sin 5x +ex cos 5x×5+5ex(-sin5x×5)+5ex cos 5x =-24ex sin 5x +10ex cos 5x =2ex5 cos 5x-12 sin 5x

(v) We have,
y= e6x cos 3xDifferentiating w.r.t. x, we getdydx=e6x×6× cos 3x+e6x(-sin 3x×3) =6e6x cos3x-3e6xsin 3xDifferentiating again w.r.t. x, we getd2ydx2=6e6x cos3x × 6 -6e6x sin3x×3- 3×6 e6x sin3x-3e6x×3 cos 3x =27e6x cos3x-36e6x sin3x =9e6x3 cos3x-4 sin3x

(vi) We have,
y = x3 logxDifferentiating w.r.t. x, we getdydx=3x2 logx+x3×1x =3x2 logx+x2Differentiating again w.r.t. x, we getd2ydx2=6x logx+3x2×1x+2x =6x logx +5x

(vii) We have,
y= tan-1xDifferentiating w.r.t. x, we getdydx=11+x2Differentiating again w.r.t. x, we getd2ydx2=-2x×11+x22=-2x1+x22


(viii) We have,
y= x cosxDifferentiating w.r.t. x, we getdydx=cosx -xsinxDifferentiating again w.r.t. x, we getd2ydx2=-sinx-sinx-xcosx =-2sinx+xcosx

(ix) We have,

y= loglogxDifferentiating w.r.t. x, we getdydx=1logx×1x =1xlogxDifferentiating again w.r.t. x, we getd2ydx2=0-logx+1xlogx2=-1+logxxlogx2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon