Find the set of real values of x for which log(x+3) (x2 - x) < 1________.
(-1, 0) U (1, 3) U (-3, -2)
log(x+3) (x2 - x) < 1 ------------(1)
For log to be defined
x2 - x > 0
x(x-1)> 0
x < 0 or x > 1 --------------------------(2)
Let's case 1 when x+3 > 1
x > -2 ---------------------------(3)
log(x+3) (x2 - x) < 1
We have
x2 - x < (x+3)1
x2 - x < x+3
x2 - 2x - 3 < 0
Hence x > 3 and x < -1
-1 < x < 3 --------------(4)
Common region in equation 2,3 and 4 we set,
x ∈ (-1,0) U (1,3)
Case 2 : When x + 3 lies between 0 and 1
0 < x + 3 < 1
-3 < x < -2 ------------------------(5)
Then log(x+3) (x2 - x) < 1
logx+3(x2−x) < 1 ⇒x2−x > x +3
⇒x2−2x−3 >0
⇒(x−3)(x+2) > 0
⇒ x < -1 or x > 3 ___(6)
From (5) & (6)
xϵ(−3,−2)
∴ From cases (1) & (2) xϵ(−3,−2)∪(−1,0)∪(1,3)