The correct option is B (−6,0)−{−2}
Step-1: Making leading coefficient positive.
Let f(x)=x2+mx+m2+6m
Step-2:
Case-l: When no root is - 2 or 0
f(−2)f(0)<0
⇒(4−2m+m2+6m)(m2+6m)<0⇒(m2+4m+4)(m2+6m)<0
⇒(m+2)2m(m+6)<0⇒m∈(−6,0)−{−2}
Case-II: When one of the root is −2 or 0
(i) if f(−2)=0
⇒4−2m+m2+6m=0
⇒m2+4m+4=0⇒m=−2
For m=−2 equation: x2−2x−8=0⇒x=4,−2⇒ No root in (−2,0)
(ii) If f(0)=0
⇒m2+6m=0⇒m=0,−6
For m=0 equation: x2=0⇒x=0,0⇒ No root in (−2,0)
Hence, m∈(−6,0)−{−2}