The correct option is B 10√59
Comparing (i) and (ii) with →r=→a+t→b we get,
→a1=^i+^j,→b1=2^i−^j+^k
→a2=2^i+^j−^k,→b2=3^i−5^j+2^k
Therefore →a2−→a1=^i−^k
and →b1×→b2=(2^i−^j+^k)×(3^i−5^j+2^k)
^i ^j ^k
=|2 −1 1|=3^i−^j−7^k
3 −5 2
So |→b1×→b2|=√9+1+49=√59
Hence, the shortest distance between the given lines is given by
d=|(→b1×→b2)⋅(→a2−→a1)|→b1×→b2||=|3−0+7|√59=10√59