Find the shortest distance between lines →r=(4^i−^j)+λ(^i+2^j−3^k) and →r=(^i−^j+2^k)+μ(2^i+4^j−5^k)
Given lines are →r=(4^i−^j)+λ(^i+2^j−3^k) and →r=(^i−^j+2^k)+μ(2^i+4^j−5^k)
Here →a1=4^i−^j,→b1=^i−2^j−3^k and →a2=^i−^j+2^k,→b2=2^i+4^j−5^k
So, →a2−→a1=−3^i+2^k,→b1×→b2=⎡⎢⎣^i^j^k12−324−5⎤⎥⎦=2^i−^j
Therefore, S.D =|(→a2−→a1).(→b1×→b2)||→b1×→b2|=|(−3^i+2^k).(2^i−^j)||2^i−^j|=|−6|√4+1=6√5 units
Hence required shortest distance is 6√55 units.