Given that lines:
→r=3^i+8^j+3^k+λ(3^i−^j+^k)
and →r=−3^i−7^j+6^k+μ(−3^i+2^j+4^k).
∴a1=3^i+8^j+3^k,b1=3^i−^j+^k
a2=−3^i−7^j+6^k,b2=−3^i2^j+4^k
then, →b1×→b2=∣∣
∣
∣∣^i^j^k3−11−324∣∣
∣
∣∣
=^i(−4−2)−^j(12+3)+^k(6−3)
=−6^i−15^j+3^k
|→b1×→b2|=√(−6)2+(−15)2+(3)2
=√36+225+9
=√270
And →a2−→a1=(−3^i−7^j+6^k)−(3^i+8^j+3^k)
=−3^i−7^j+6^k−3^i−8^j−3^k
=−6^i−15^j+3^k
Maximum Distance =[→a2−→a1⋅→b1→b2]|→b1×→b2|
=(→a2−→a1)⋅(→b1×→b2)|→b1×→b2|
=(−6^i−15^j+3^k)(−6^i−15^j+3^k)√270
=36+225+9√270
=270√270
=√270
=3√30.