wiz-icon
MyQuestionIcon
MyQuestionIcon
15
You visited us 15 times! Enjoying our articles? Unlock Full Access!
Question

Find the shortest distance between the given lines by vector method.
r=3^i+8^j+3^k+λ(3^i^j+^k) and r=3^i7^j+6^k+μ(3^i+2^j+4^k).

Open in App
Solution

Given that lines:
r=3^i+8^j+3^k+λ(3^i^j+^k)
and r=3^i7^j+6^k+μ(3^i+2^j+4^k).
a1=3^i+8^j+3^k,b1=3^i^j+^k
a2=3^i7^j+6^k,b2=3^i2^j+4^k
then, b1×b2=∣ ∣ ∣^i^j^k311324∣ ∣ ∣
=^i(42)^j(12+3)+^k(63)
=6^i15^j+3^k
|b1×b2|=(6)2+(15)2+(3)2
=36+225+9
=270
And a2a1=(3^i7^j+6^k)(3^i+8^j+3^k)
=3^i7^j+6^k3^i8^j3^k
=6^i15^j+3^k
Maximum Distance =[a2a1b1b2]|b1×b2|
=(a2a1)(b1×b2)|b1×b2|
=(6^i15^j+3^k)(6^i15^j+3^k)270
=36+225+9270
=270270
=270
=330.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Shortest Distance between Two Skew Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon