wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the shortest distance between the line x=1+t, y=1+6t, z=2t, tR and x=1+2k,y=5+15k,z=2+6k,kR.

Open in App
Solution

Consider the problem

x=1+t,y=1+6t,z=2t

t=x1 ------ (1)

t=y16 ----- (2)

t=z2 ----- (3)

from (1),(2) and (3)

x1=y16=z2 ------ (A)

Now,

x=1+2k,y=5+15k,

k=x12 ----- (4)

k=y515 ---- (5)

z=2+6k

k=z+26 ----- (6)

from (4),(5),(6)

x12=y515=z+26 ----- (B)

Converting equation of lines (A) and (B) in the vector form

r=a1+λb1

r=(^i+^j+0^k)+λ(^i+6^j+2^k)

And
r=a2+μb2

r=(^i+5^j2^k)+μ(2^i+15^j+6^k)

Here,

a1=^i+^j+0^k,b2=^i+6^j+2^ka2=^i+5^j2^k,b2=2^i+15^j+6^k

b1×b2=∣ ∣ ∣^i^j^k1622156∣ ∣ ∣=6^i2^j+3^kb1×b2=36+4+9=49=7a2a1=0^i+4^j2^k(b1×b2).(a2a1)=(6×0)2(×4)+(3×2)=14

Shortest distance between the given lines

d=∣ ∣(b1×b2).(a2a1)b1×b2∣ ∣=147=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Shortest Distance between Two Skew Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon