Find the shortest distance between the lines
x+17=y+1−6=z+11 and x−31=y−5−2=z−71
The given lines are
x+17=y+1−6=z+11 and x−31=y−5−2=z−71
For line 1st dr's = (7, -6, 1) and passes through (-1, -1, -1) then equation of given lines (in vector form) are
⇒ r1=−^i−^j−^k+λ(7^i−6^j+^k)
Similarly, r2=3^i+5^j+7^k+μ(^i−2^j+^k)
Which are of the form r1=a1+λb1 and r2=a2+μb2
where, a1=−^i−^j−^k,b1=7^i−6^j+^k
and a2=3^i+5^j+7^k,b2=^i−2^j+^k
Now, a2−a1=(3^i+5^j+7^k)−(−^i−^j−^k)=4^i+6^j+8^k
and b1×b2=∣∣
∣
∣∣^i^j^k7−611−21∣∣
∣
∣∣=^i(−6+2)−^j(7−1)+^k(−14+6)=−4^i−6^j−8^k
|b1×b2|=√(−4)2+(−6)2+(−8)2=√16+36+64=√116=2√29
∴ SD between the given lines
d=∣∣(b1×b2).(a2−a1)|b1×b2|∣∣=|(−4^i−6^j−8^k).(4^i+6^j+8^k)|2√29=|(−4)×4+(−6)×6+(−8)×8|2√29=|−16−36−64|2√29=1162√29=58√29=2√29 units