Given, →r=2^i+^j+^k+λ(^i−2^j+^k) and
→r=^i−3^j−^k+λ(5^i+2^j−^k)
Comparing above equation with →r=→a1+λ→b1 and →r=→a2+λ→b2, we get
→a1=2^i+^j+^k, →b1=^i−2^j+^k
→a2=^i−3^j−^k, →b2=5^i+2^j−^k
Therefore, →a2−→a1=−^i−4^j−2^k
→b1×→b2=(^i−2^j+^k)×(5^i+2^j−^k)
=∣∣
∣
∣∣^i^j^k1−2152−1∣∣
∣
∣∣=6^j+12^k
|→b1×→b2|=√36+144=√180=6√5
Shortest distance is given by,
d=∣∣
∣∣(→b1×→b2).(→a2−→a1)|→b1×→b2|∣∣
∣∣
=∣∣
∣∣(6^j+12^k).(−^i−4^j−2^k)6√5∣∣
∣∣
=|−24−24|6√5
=486√5
=8√5