We know that the shortest distance between the line, →r=→a1+λ →b1 and →r=→a2+μ→b2 is given as,
d=∣∣
∣∣(→a2−→a1)⋅(→b1×→b2)|→b1×→b2|∣∣
∣∣
Here, →a1=4^i−^j,→a2=^i−^j+2^k,→b1=^i+2^j−3^k
and →b2=^i+4^j−5^k
Now, →a2−→b1=(^i−^j+2→k)−(4→i−→j)=−3→i+0→j+2→k
=−3→i+2→k
and →b1×→b2=∣∣
∣
∣∣^i^j^k12−314−5∣∣
∣
∣∣
=^i(−10+12)−^j(−5+3)+^k(4−2)=2^i+2^j+2^k
∴(→a2−→a1)⋅(→b1×→b2)=(−3^i+2^k)⋅(2^i+2^j+2^k)=−6+4=−2
and |→b1×→b2|=√(2)2+(2)2+(2)2=√12
∴ Shortest distance, d=∣∣∣−2√12∣∣∣
=22√3=1√3 units.