From the given equations, lets assume
→a1=(4^i−^j),→b1=(^i+2^j−3^k),→a2=(^i−^j+2^k) and →b2=(2^i+4^j−5^k)Now, →a2−→a1=−3^i+0^j+2^k→b1×→b2=∣∣
∣
∣∣^i^j^k12−324−5∣∣
∣
∣∣=2^i−^j+0^k|→b1×→b2|=√(2)2+(−1)2=√5
d=|(→a2−→a1)⋅(→b1×→b2)||→b1×→b2|
=|(−3^i+0^j+2^k).(2^i−^j+0^k)|√5
=|−6+0+0|√5=6√5
or 6√55 units.