Find the shortest distance between the lines
r=(^i+2^j+^k)+λ(^i−^j+^k) and r=(2^i−^j−^k)+μ(2^i+^j+2^k)
The given equations are r=^i+2^j+^k+λ(^i−^j+^k)
and r=2^i−^j−^k+μ(2^i+^j+2^k)
which is of the form r=a1+λ b1 and r=a2+μ b2
a1=^i+2^j+^k,b1=^i−^j+^k
and a2=2^i−^j−^k, b2=2^i+^j+2^k
Now, a2−a1=(2^i−^j−^k)−(^i+2^j+^k)=^i−3^j−2^k
and b1×b2=∣∣
∣
∣∣^i^j^k1−11212∣∣
∣
∣∣=^i(−2−1)−^j(2−2)+^k(1+2)=−3^i+3^k
⇒|b1×b2|=√(−3)2+(3)2=√9×9=√18=3√2
Substituting all the values in equation, wa obtain
Shortest distance =∣∣(b1×b2).(a2−a1)|b1×b2|∣∣
=|(−3^i+3^k).(^i−3^j−2^k)|3√2=|(−3)×1+0×(−3)+3×(−2)|3√2=93√2=3×√2√2×√2=3√22units
Therefore, the shortest distance between the two lines is 3√22 units.
Note: The two lines should be parallel and non - interceping, then we can only fetermined the shortest distance.