wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the shortest distance between the lines
r=(^i+2^j+^k)+λ(^i^j+^k) and
r=^2i^j^k+μ(^2i+^j+2^k)

Open in App
Solution

The equations of the given lines are
r=(^i+2^j+^k)+λ(^i^j+^k) and
r=^2i^j^k+μ(^2i+^j+2^k)
It is known that the shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by,
d=∣ ∣ ∣(b1×b2)(a1a2)b1×b2∣ ∣ ∣.....(1)
Comparing the given equations, we obtain
a1=^i+2^j+^k
b1=^i^j+^k
a2=2^i^j^k
b2=2^i+^j+2^k
a2a1=(2^i^j^k)(^i+2^j+^k)=(^i3^j2^k)
b1×b2=∣ ∣ ∣^i^j^j111212∣ ∣ ∣
b1×b2=(21)^i(22)^j+(1+2)^k=3^i+3^k
b1×b2=(3)2+(3)2=18=32
Substituting all the values in equation (1), we obtain
d=∣ ∣ ∣(^3^i+3^k).(^i3^j2^k)32∣ ∣ ∣
d=3.1+3(2)32
d=932
d=32=3×22×2=322
Therefore, the shortest distance between the two lines is 322 units.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Shortest Distance between Two Skew Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon