wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the shortest distance between the lines whose vector equations are

Open in App
Solution

The vector equations are,

r =( i ^ +2 j ^ +3 k ^ )+λ( i ^ 3 j ^ +2 k ^ ) (1)

And

r =( 4 i ^ +5 j ^ +6 k ^ )+μ( 2 i ^ +3 j ^ + k ^ )(2)

Comparing equation (1) and (2) with (3) and (4) respectively.

r = a 1 +λ b 1 (3)

And,

r = a 2 +μ b 2 (4)

We get,

a 1 =( i ^ +2 j ^ +3 k ^ )(5)

b 1 =( i ^ 3 j ^ +2 k ^ )(6)

a 2 =( 4 i ^ +5 j ^ +6 k ^ )(7)

And,

b 2 =( 2 i ^ +3 j ^ + k ^ )(8)

Subtract equation (5) from (7),

a 2 a 1 =( 4 i ^ +5 j ^ +6 k ^ )( i ^ +2 j ^ +3 k ^ ) a 2 a 1 =( 3 i ^ +3 j ^ +3 k ^ ) (9)

Take cross product of the vectors, b 1 and b 2 .

b 1 × b 2 =( i ^ 3 j ^ +2 k ^ )×( 2 i ^ +3 j ^ + k ^ ) =| i ^ j ^ k ^ 1 3 2 2 3 1 | =( ( 3 )×12×3 ) i ^ ( 1×12×2 ) j ^ +( 1×3( 3 )×2 ) k ^ =( 36 ) i ^ ( 14 ) j ^ +( 3+6 ) k ^

Further solve the above equation.

b 1 × b 2 =9 i ^ +3 j ^ +9 k ^ (10)

The magnitude of the vector in equation (10) is,

| b 1 × b 2 |=| 9 i ^ +3 j ^ +9 k ^ | = ( 9 ) 2 + 3 2 + 9 2 = 81+9+81 = 9( 9+1+9 )

The magnitude of the cross product is,

| b 1 × b 2 |=3 19 (11)

Hence, the shortest distance between the given lines is given by,

d=| ( b 1 × b 2 )( a 2 a 1 ) | b 1 × b 2 | |(12)

Substitute the values from equation (9), (10) and (11) in equation (12).

d=| ( 9 i ^ +3 j ^ +9 k ^ )( 3 i ^ +3 j ^ +3 k ^ ) 3 19 | =| 9×3+3×3+9×3 3 19 | =| 3( 9+3+9 ) 3 19 | =| 3 19 |

Thus, the shortest distance between the given lines is 3 19 units.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Drawing Tangents to a Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon