The vector equations are,
r → =( i ^ +2 j ^ +3 k ^ )+λ( i ^ −3 j ^ +2 k ^ ) (1)
And
r → =( 4 i ^ +5 j ^ +6 k ^ )+μ( 2 i ^ +3 j ^ + k ^ )(2)
Comparing equation (1) and (2) with (3) and (4) respectively.
r → = a → 1 +λ b → 1 (3)
And,
r → = a → 2 +μ b → 2 (4)
We get,
a → 1 =( i ^ +2 j ^ +3 k ^ )(5)
b → 1 =( i ^ −3 j ^ +2 k ^ )(6)
a → 2 =( 4 i ^ +5 j ^ +6 k ^ )(7)
And,
b → 2 =( 2 i ^ +3 j ^ + k ^ )(8)
Subtract equation (5) from (7),
a → 2 − a → 1 =( 4 i ^ +5 j ^ +6 k ^ )−( i ^ +2 j ^ +3 k ^ ) a → 2 − a → 1 =( 3 i ^ +3 j ^ +3 k ^ ) (9)
Take cross product of the vectors, b → 1 and b → 2 .
b → 1 × b → 2 =( i ^ −3 j ^ +2 k ^ )×( 2 i ^ +3 j ^ + k ^ ) =| i ^ j ^ k ^ 1 −3 2 2 3 1 | =( ( −3 )×1−2×3 ) i ^ −( 1×1−2×2 ) j ^ +( 1×3−( −3 )×2 ) k ^ =( −3−6 ) i ^ −( 1−4 ) j ^ +( 3+6 ) k ^
Further solve the above equation.
b → 1 × b → 2 =−9 i ^ +3 j ^ +9 k ^ (10)
The magnitude of the vector in equation (10) is,
| b → 1 × b → 2 |=| −9 i ^ +3 j ^ +9 k ^ | = ( −9 ) 2 + 3 2 + 9 2 = 81+9+81 = 9( 9+1+9 )
The magnitude of the cross product is,
| b → 1 × b → 2 |=3 19 (11)
Hence, the shortest distance between the given lines is given by,
d=| ( b → 1 × b → 2 )⋅( a → 2 − a → 1 ) | b → 1 × b → 2 | |(12)
Substitute the values from equation (9), (10) and (11) in equation (12).
d=| ( −9 i ^ +3 j ^ +9 k ^ )⋅( 3 i ^ +3 j ^ +3 k ^ ) 3 19 | =| −9×3+3×3+9×3 3 19 | =| 3( −9+3+9 ) 3 19 | =| 3 19 |
Thus, the shortest distance between the given lines is 3 19 units.