Find the shortest distance between the lines whose vector equations are r=(^i+2^j+3^k)+λ(^i−3^j+2^k)
and r=(4^i+5^j+6^k)+μ(2^i+3^j+^k)
The given lines are r=^i+2^j+3^k+λ(^i−3^j+2^k)
and r=4^i+5^j+6^k+μ(2^i+3^j+^k)
Comparing the given equations with r=a1+λb1 and r=a2+μb2, we obtain
a1=^i+2^j+3^k, b1=^i−3^j+2^kand a2=4^i+5^j+6^k, b2=2^i+3^j+^kHere, a2−a1=(4^i+5^j+6^k)−(^i+2^j+3^k)=3^i+3^j+3^k
Also, b1×b2=∣∣
∣
∣∣^i^j^k1−32231∣∣
∣
∣∣=^i(−3−6)−^j(1−4)+^k(3+6)=−9^i+3^j+9^[k]
⇒ |b1×b2|=√(−9)2+(3)2+(9)2=√81+9+81=√171=3√19
∴ Required shortest distance
d=∣∣(b1×b2).(a2−a1)|b1×b2|∣∣=|(−9^i+3^j+9^k)3(3^i+3^j+3^k)|3√19=|−9×3+3×3+9×3|3√19=−27+9+273√19=93√19=3√19
Therefore, the shortest distance between the two given lines is 3√19 units