wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the shortest distance between the lines whose vector equations are r=(^i+2^j+3^k)+λ(^i3^j+2^k)
and r=(4^i+5^j+6^k)+μ(2^i+3^j+^k)

Open in App
Solution

The given lines are r=^i+2^j+3^k+λ(^i3^j+2^k)
and r=4^i+5^j+6^k+μ(2^i+3^j+^k)
Comparing the given equations with r=a1+λb1 and r=a2+μb2, we obtain
a1=^i+2^j+3^k, b1=^i3^j+2^kand a2=4^i+5^j+6^k, b2=2^i+3^j+^kHere, a2a1=(4^i+5^j+6^k)(^i+2^j+3^k)=3^i+3^j+3^k
Also, b1×b2=∣ ∣ ∣^i^j^k132231∣ ∣ ∣=^i(36)^j(14)+^k(3+6)=9^i+3^j+9^[k]
|b1×b2|=(9)2+(3)2+(9)2=81+9+81=171=319
Required shortest distance
d=(b1×b2).(a2a1)|b1×b2|=|(9^i+3^j+9^k)3(3^i+3^j+3^k)|319=|9×3+3×3+9×3|319=27+9+27319=9319=319
Therefore, the shortest distance between the two given lines is 319 units


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Shortest Distance between Two Skew Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon