The given lines are
→r=(1−t)^i+(t−2)^j+(3−2t)^k
⇒ →r=(^i−2^j+3^k)+t(−^i+^j−2^k)......(1)
→r=(s+1)^i+(2s−1)^j−(2s+1)^k
⇒ →r=(^i−^j+3^k)+s(^i+2^j−2^k).......(2)
It is known that the shortest distance between the lines,
→r=→a1+λ→b1 and →r=→a2+μ→b2, is given by
d=∣∣
∣
∣∣(→b1×→b2)(→a1−→a2)∣∣→b1×→b2∣∣∣∣
∣
∣∣.....(1)
For the given equations,
→a1=^i−2^j+3^k
→b2=−^i+^j−2^k
→a2=^i−^j−^k
→b2=^i+2^j−2^k
→a2−→a1=(^i−^j−^k)−(^i−2^j+3^k)=^j−4^k
(→b1×→b2)(→a1−→a2)=∣∣
∣
∣∣^i^j^k−11−212−2∣∣
∣
∣∣
=(−2+4)^i−(2+2)^j+(2−1)^k
⇒ ∣∣→b1×→b2∣∣=√(2)2+(−4)2+(−3)2=√4+16+9=√29
∴ (→b1×→b2).(→a1−→a2)=(2^i−4^j−3^k).(^j−4^k)=−4+12=8
Substituting all the values in equation (3), we obtain,
d=∣∣∣8√29∣∣∣=8√29
Therefore, the shortest distance between the lines is 8√29 units.