wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the shortest distance between the lines whose vector equations are :
r=(1p)^i+(p2)^j+(32p)^k
r=(q+1)^i+(2q1)^j(2q1)^k

Open in App
Solution

The given lines are
r=(1t)^i+(t2)^j+(32t)^k
r=(^i2^j+3^k)+t(^i+^j2^k)......(1)
r=(s+1)^i+(2s1)^j(2s+1)^k
r=(^i^j+3^k)+s(^i+2^j2^k).......(2)
It is known that the shortest distance between the lines,
r=a1+λb1 and r=a2+μb2, is given by
d=∣ ∣ ∣(b1×b2)(a1a2)b1×b2∣ ∣ ∣.....(1)
For the given equations,
a1=^i2^j+3^k
b2=^i+^j2^k
a2=^i^j^k
b2=^i+2^j2^k
a2a1=(^i^j^k)(^i2^j+3^k)=^j4^k
(b1×b2)(a1a2)=∣ ∣ ∣^i^j^k112122∣ ∣ ∣
=(2+4)^i(2+2)^j+(21)^k
b1×b2=(2)2+(4)2+(3)2=4+16+9=29
(b1×b2).(a1a2)=(2^i4^j3^k).(^j4^k)=4+12=8
Substituting all the values in equation (3), we obtain,
d=829=829
Therefore, the shortest distance between the lines is 829 units.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon