The given lines are →r=(^i+2^j+3^k)+λ(^i−3^j+2^k) and
→r=4^i+5^j+6^k+μ(^2i+3^j+^k)
It is known that the shortest distance between the lines, →r=→a1+λ→b1 and →r=→a2+μ→b2 is given by,
d=∣∣
∣
∣∣(→b1×→b2)(→a1−→a2)∣∣→b1×→b2∣∣∣∣
∣
∣∣.....(1)
Comparing the given equations with →r=→a1+λ→b1 and →r=→a1+μ→b1, we obtain
→a1=^i+2^j+3^k
→b1=^i−3^j+2^k
→a2=4^i+5^j+6^k
→b2=^2i+3^j+^k
→a2−→a1=(4^i+5^j+6^k)−((^i+2^j+3^k)=3^i+3^j+3^k
→b1×→b2=√(−9)2+(3)2+(9)2=√18+9+81=√171=3√19
(→b1×→b2).(→a1−→a2)=(−9^i+3^j+9^k).(3^i+3^j+3^k)
=−9×3+3×3+9×3=9
Substituting all the values in equation (1), we obtain
d=∣∣∣93√19∣∣∣=3√19
Therefore, the shortest distance between the two given lines is 3√19 units.