3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Shortest Distance between Two Skew Lines
Find the shor...
Question
Find the shortest distance between the skew lines
r
=
(
6
i
+
2
j
+
2
k
)
+
t
(
i
−
2
j
+
2
k
)
and
F
=
(
−
4
i
−
k
)
+
s
(
3
i
−
2
j
−
2
k
)
where s,t are scalars.
Open in App
Solution
shortest distance between lines vector equations
→
r
=
→
a
1
+
t
→
b
1
and
→
r
=
→
a
2
+
s
→
b
2
is
∣
∣ ∣
∣
(
→
b
1
×
→
b
2
)
.
(
→
a
2
−
→
a
1
)
|
→
b
1
×
→
b
2
|
∣
∣ ∣
∣
Now,
→
r
=
(
6
i
+
2
j
+
2
k
)
+
t
(
i
−
2
j
+
2
k
)
Comparing with
→
r
=
→
a
1
+
t
→
b
1
→
a
1
=
6
i
+
2
j
+
2
k
→
b
1
=
i
−
2
j
+
2
k
→
r
=
(
−
4
i
−
k
)
+
s
(
3
i
−
2
j
−
2
k
)
Comparing with
→
r
=
→
a
2
+
s
→
b
2
→
a
2
=
−
4
i
−
k
→
b
2
=
3
i
−
2
j
−
2
k
Now,
(
→
a
2
−
→
a
1
)
=
(
−
4
i
−
k
)
−
(
6
i
+
2
j
+
2
k
)
=
(
−
4
−
6
)
i
+
(
−
2
)
j
+
(
−
1
−
2
)
k
=
−
10
i
−
2
j
−
3
k
(
→
b
1
×
→
b
2
)
=
∣
∣ ∣
∣
i
j
k
1
−
2
2
3
−
2
−
2
∣
∣ ∣
∣
=
i
[
(
−
2
×
−
2
)
−
(
−
2
×
2
)
]
−
j
[
(
1
×
−
1
)
−
(
3
×
2
)
]
+
k
[
(
1
×
−
2
)
−
(
3
×
−
2
)
]
=
i
[
4
+
4
]
−
j
[
−
2
−
6
]
+
k
[
−
2
+
6
]
=
8
i
+
8
j
+
4
k
|
→
b
1
×
→
b
2
|
=
√
8
2
+
8
2
+
4
2
=
√
64
+
64
+
16
=
√
144
=
12
Also,
(
→
b
1
×
→
b
2
)
.
(
→
a
2
−
→
a
1
)
=
(
8
i
+
8
j
+
4
k
)
.
(
−
10
i
−
2
j
−
3
k
)
=
(
8
×
−
10
)
+
(
8
×
−
2
)
+
(
4
×
−
3
)
=
−
80
−
16
−
12
=
−
108
Shortest distance
=
∣
∣ ∣
∣
(
→
b
1
×
→
b
2
)
.
(
→
a
2
−
→
a
1
)
|
→
b
1
×
→
b
2
|
∣
∣ ∣
∣
=
∣
∣
∣
−
108
12
∣
∣
∣
=
|
−
9
|
=
9
Therefore, the shortest distance between the given two lines is 9.
Suggest Corrections
1
Similar questions
Q.
Find the shortest distance between the skew lines
r
=
(
6
i
+
2
j
+
2
k
)
+
t
(
i
−
2
j
+
2
k
)
and
r
=
(
−
4
i
−
k
)
+
s
(
3
i
−
2
j
−
2
k
)
.
Q.
Find the shortest distance between the skew lines
→
r
=
(
6
ˆ
i
+
2
ˆ
j
+
2
ˆ
k
)
+
λ
(
ˆ
i
−
2
ˆ
j
+
2
ˆ
k
)
and
→
r
=
(
−
4
ˆ
i
−
ˆ
k
)
+
μ
(
3
ˆ
i
−
2
ˆ
j
−
2
ˆ
k
)
Q.
Find the shortest distance between the lines
(i)
r
→
=
i
^
+
2
j
^
+
k
^
+
λ
i
^
-
j
^
+
k
^
and
,
r
→
=
2
i
^
-
j
^
-
k
^
+
μ
2
i
^
+
j
^
+
2
k
^
(ii)
x
+
1
7
=
y
+
1
-
6
=
z
+
1
1
and
x
-
3
1
=
y
-
5
-
2
=
z
-
7
1
(iii)
r
→
=
i
^
+
2
j
^
+
3
k
^
+
λ
i
^
-
3
j
^
+
2
k
^
and
r
→
=
4
i
^
+
5
j
^
+
6
k
^
+
μ
2
i
^
+
3
j
^
+
k
^
(iv)
r
→
=
6
i
^
+
2
j
^
+
2
k
^
+
λ
i
^
-
2
j
^
+
2
k
^
and
r
→
=
-
4
i
^
-
k
^
+
μ
3
i
^
-
2
j
^
-
2
k
^
Q.
Find the shortest distance between the lines
¯
¯
¯
r
=
4
¯
i
−
¯
j
+
λ
(
¯
i
+
2
¯
j
−
5
¯
¯
¯
k
)
and
¯
¯
¯
r
=
¯
i
−
¯
j
+
2
¯
¯
¯
k
+
μ
(
¯
i
+
2
¯
j
−
5
¯
¯
¯
k
)
Q.
Find the angle between the following pairs of lines:
(i)
r
→
=
4
i
^
-
j
^
+
λ
i
^
+
2
j
^
-
2
k
^
and
r
→
=
i
^
-
j
^
+
2
k
^
-
μ
2
i
^
+
4
j
^
-
4
k
^
(ii)
r
→
=
3
i
^
+
2
j
^
-
4
k
^
+
λ
i
^
+
2
j
^
+
2
k
^
and
r
→
=
5
j
^
-
2
k
^
+
μ
3
i
^
+
2
j
^
+
6
k
^
(iii)
r
→
=
λ
i
^
+
j
^
+
2
k
^
and
r
→
=
2
j
^
+
μ
3
-
1
i
^
-
3
+
1
j
^
+
4
k
^
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Shortest Distance between Two Skew Lines
MATHEMATICS
Watch in App
Explore more
Shortest Distance between Two Skew Lines
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app