Given parabola is y=x2
Let the point on the parabola be (h,k)
Distance between (h,k) and (0,c)
D=√(h−0)2+(k−c)2
⇒D=√h2+(k−c)2
As (h,k) lies on y=x2,
so k=h2
Now,
D=√k+(k−c)2
We need the minimum value of D.
Differentiating w.r.t. k,
D′(k)=1+2(k−c)2√k+(k−c)2
⇒D′(k)=[2k−2c+1]2√k+(k−c)2
⇒D′(k)=[k−(2c−12)]√k+(k−c)2
Putting D′(k)=0, we get
[k−(2c−12)]√k+(k−c)2=0
⇒k=2c−12
Using first derivatives test,
k<2c−12⇒D′(k)<0
k>2c−12⇒D′(k)>0
So,
k=2c−12 is a point of local minima.
Therefore, the minimum distance is D=√k+(k−c)2
⇒D=√2c−12+(2c−12−c)2
⇒D=√2c−12+14
⇒D=√4c−2+14
∴D=√4c−14
Hence, the shortest distance is √4c−12