Let the one corner of rectangle be at (x,y)Then the other corners will be at (x,−y),(−x,y),(−x,−y)
Sides of the rectangle are 2x,2y
Then the area of the rectangle A=2x×2y=4xy
⟹A2=16x2y2
Given (x,y) lies on the ellipse x2+4y2=16⟹x2=16−4y2
So A2=16(16−4y2)y2=256y2−64y4
Differentiating on both sides
2AdAdx=512y−256y3=0⟹y2=2⟹y=±√2
x2=16−4y2=16−8=8⟹x=±2√2
so the sides are 4√2,2√2