x=4t2+3, y=8t3−1
Differentiate w.r.t. x
dxdt=8t, dydt=24t2
∴dydx=24t28t=3t
Let the tangent at P(4t2+3, 8t3−1) be normal at Q(4t21+3, 8t31−1)
Equation of tangent at P is y−(8t3−1)=3t(x−4t2−3)
This tangent passes through Q, then
(8t31−1)−(8t3−1)=3t[(4t21+3)−(4t2+3)]
⇒8(t31−t3)=3t×4(t21−t2)
⇒2(t21+t1t+t2)=3t(t1+t)
⇒2t21−tt1−t2=0
⇒(t1−t)(2t1+t)=0
⇒t=−2t1 (∵t≠t1)
⇒t1=−t2
Now, (dydx)t=−1(dydx)t1
⇒3t=−13t1
⇒tt1=−19
⇒t×(−t2)=−19
⇒t2=29
⇒t=±√23
∴ Slope of the line : 3t=±√2